Example

Displaying: 3 Found: 69 Total: 69


A synthetic Escherichia coli predator–prey ecosystem


Description

This is the reduced model described in the article:
A synthetic Escherichia coli predator–prey ecosystem 
Balagaddé FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L.Mol Syst Biol. 2008;4:187. Epub 2008 Apr 15. PMID: 18414488; DOI:10.1038/msb.2008.24

Abstract:
We have constructed a synthetic ecosystem consisting of two Escherichia coli populations, which communicate bi-directionally through quorum sensing and regulate each other's gene expression and survival via engineered gene circuits. Our synthetic ecosystem resembles canonical predator–prey systems in terms of logic and dynamics. The predator cells kill the prey by inducing expression of a killer protein in the prey, while the prey rescue the predators by eliciting expression of an antidote protein in the predator. Extinction, coexistence and oscillatory dynamics of the predator and prey populations are possible depending on the operating conditions as experimentally validated by long-term culturing of the system in microchemostats. A simple mathematical model is developed to capture these system dynamics. Coherent interplay between experiments and mathematical analysis enables exploration of the dynamics of interacting populations in a predictable manner.

In the article the cell density is given in per 103 cells per microlitre. To evade a conversion factor in the SBML implementation, the unit for the cell densities was just left the same as for the AHLs A and A2 (nM).

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2012 The BioModels.net Team.

Formats

Links

A theoretical study on activation of transcription factor modulated by intracellular Ca2+ oscillations.


Description

This a model from the article: A theoretical study on activation of transcription factor modulated by intracellular Ca2+ oscillations. Zhu CL, Zheng Y, Jia Y Biophys. Chem.[2007 Aug:129(1):49-55 17560007,

Abstract: This work presents both deterministic and stochastic models of genetic expression modulated by intracellular calcium (Ca2+) oscillations, based on macroscopic differential equations and chemical Langevin equations, respectively. In deterministic case, the oscillations of intracellular Ca2+ decrease the effective Ca2+ threshold for the activation of transcriptional activator (TF-A). The average activation of TF-A increases with the increase of the average amplitude of intracellular Ca2+ oscillations, but decreases with the increase of the period of intracellular Ca2+ oscillations, which are qualitatively consistent with the experimental results on the gene expression in lymphocytes. In stochastic case, it is found that a large internal fluctuation of the biochemical reaction can enhance gene expression efficiency specifically at a low level of external stimulations or at a small rate of TF-A dimer phosphorylation activated by Ca2+, which reduces the threshold of the average intracellular Ca2+ concentration for gene expression.

Formats

Links

A whole-body mathematical model of cholesterol metabolism and its age-associated dysregulation.


Description

BACKGROUND: Global demographic changes have stimulated marked interest in the process of ageing. There has been, and will continue to be, an unrelenting rise in the number of the oldest old ( >85 years of age). Together with an ageing population there comes an increase in the prevalence of age related disease. Of the diseases of ageing, cardiovascular disease (CVD) has by far the highest prevalence. It is regarded that a finely tuned lipid profile may help to prevent CVD as there is a long established relationship between alterations to lipid metabolism and CVD risk. In fact elevated plasma cholesterol, particularly Low Density Lipoprotein Cholesterol (LDL-C) has consistently stood out as a risk factor for having a cardiovascular event. Moreover it is widely acknowledged that LDL-C may rise with age in both sexes in a wide variety of groups. The aim of this work was to use a whole-body mathematical model to investigate why LDL-C rises with age, and to test the hypothesis that mechanistic changes to cholesterol absorption and LDL-C removal from the plasma are responsible for the rise. The whole-body mechanistic nature of the model differs from previous models of cholesterol metabolism which have either focused on intracellular cholesterol homeostasis or have concentrated on an isolated area of lipoprotein dynamics. The model integrates both current and previously published data relating to molecular biology, physiology, ageing and nutrition in an integrated fashion.

 

 

Formats

Links