Example

Displaying: 3 Found: 33 Total: 69


A multiscale model of interleukin-6-mediated immune regulation in Crohn's disease and its application in drug discovery and development.


Description

In this study, we have developed a multiscale systems model of interleukin (IL)-6-mediated immune regulation in Crohn's disease, by integrating intracellular signaling with organ-level dynamics of pharmacological markers underlying the disease. This model was linked to a general pharmacokinetic model for therapeutic monoclonal antibodies and used to comparatively study various biotherapeutic strategies targeting IL-6-mediated signaling in Crohn's disease. Our work illustrates techniques to develop mechanistic models of disease biology to study drug-system interaction. Despite a sparse training data set, predictions of the model were qualitatively validated by clinical biomarker data from a pilot trial with tocilizumab. Model-based analysis suggests that strategies targeting IL-6, IL-6R?, or the IL-6/sIL-6R? complex are less effective at suppressing pharmacological markers of Crohn's than dual targeting the IL-6/sIL-6R? complex in addition to IL-6 or IL-6R?. The potential value of multiscale system pharmacology modeling in drug discovery and development is also discussed.CPT: Pharmacometrics & Systems Pharmacology (2014) 3, e89; doi:10.1038/psp.2013.64; advance online publication 8 January 2014.

Formats

Links

A one-hit model of cell death in inherited neuronal degenerations.


Description

In genetic disorders associated with premature neuronal death, symptoms may not appear for years or decades. This delay in clinical onset is often assumed to reflect the occurrence of age-dependent cumulative damage. For example, it has been suggested that oxidative stress disrupts metabolism in neurological degenerative disorders by the cumulative damage of essential macromolecules. A prediction of the cumulative damage hypothesis is that the probability of cell death will increase over time. Here we show in contrast that the kinetics of neuronal death in 12 models of photoreceptor degeneration, hippocampal neurons undergoing excitotoxic cell death, a mouse model of cerebellar degeneration and Parkinson's and Huntington's diseases are all exponential and better explained by mathematical models in which the risk of cell death remains constant or decreases exponentially with age. These kinetics argue against the cumulative damage hypothesis; instead, the time of death of any neuron is random. Our findings are most simply accommodated by a 'one-hit' biochemical model in which mutation imposes a mutant steady state on the neuron and a single event randomly initiates cell death. This model appears to be common to many forms of neurodegeneration and has implications for therapeutic strategies.

Formats

Links

A quantitative description of membrane current and its application to conduction and excitation in nerve. (SBML l3v1)


Description

This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre (Hodgkin,Huxley & Katz, 1952; Hodgkin & Huxley, 1952 a-c). Its general object is to discuss the results of the preceding papers (Part I), to put them into mathematical form (Part II) and to show that they will account for conduction and excitation in quantitative terms (Part III). This SBML model uses the same formalism as the one described in the paper, contrary to modern versions: * V describes the the membrane depolarisation relative to the resting potential of the membrane * opposing to modern practice, depolarization is negative , not positive , so the sign of V is different * inward transmembrane currents are considered positive (inward current positive), contrary to modern use The changeable parameters are the equilibrium potentials( E_R, E_K, E_L, E_Na ), the membrane depolarization ( V ) and the initial sodium and potassium channel activation and inactivation coefficients ( m,h,n ). The initial values of m,h,n for the model were calculated for V = 0 using the equations from the article: n t=0 = α_n V=0 /(α_n V=0 + β_n V=0 ) and equivalent expressions for h and m . For single excitations apply a negative membrane depolarization (V < 0). To achieve oscillatory behavior either change the resting potential to a more positive value or apply a constant negative ionic current (I < 0). Two assignments for parameters in the model, alpha_n and alpha_m, are not defined at V=-10 resp. -25 mV. We did not change this to keep the formulas similar to the original publication and as most integrators seem not to have any problem with it. The limits at V=-10 and -25 mV are 0.1 for alpha_n resp. 1 for alpha_m. We thank Mark W. Johnson for finding a bug in the model and his helpful comments.

Formats

Links